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Abstract

We develop an algorithm for numerically inverting multi-dimensional transforms. Our
algorithm applies to any number of continuous variables (Laplace transforms) and discrete
variables (generating functions). We use the Fourier-series method; i.e., the inversion formulais
the Fourier series of a periodic function constructed by aliasing. This amounts to an application
of the Poisson summation formula. By appropriately exponentially damping the given function,
we control the aliasing error. We choose the periods of the multi-dimensional periodic function
so that each infinite series is a finite sum of nearly aternating infinite series; then we apply the
Euler transformation to compute the infinite series from finitely many terms. The muilti-
dimensional inversion algorithm enables us, evidently for the first time, to quickly and accurately
calculate probability distributions from several classical transforms in queueing theory. For
example, we apply our agorithm to invert the two-dimensional transforms of the joint
distribution of the duration of a busy period and the number served in that busy period, and the
time-dependent of the transient queue-length and workload distributions, in the M/G/1 queue. In
other related work, we have applied the inversion algorithms here to calculate time-dependent
distributions in the transient BMAP/G/1 queue (with a batch Markovian arrival process) and the

piecewise-stationary M /G /1 queue.

Keywords: numerical transform inversion, Laplace transforms, generating functions, multi-
dimensional transforms, Fourier transforms, Fourier-series method, Poisson summation formula,

M/G/1 queue, transient distributions.

1980 AMS subject classification: 65D30, 60K 25.



1. Introduction

In this paper we present an algorithm for numerically inverting multi-dimensional transforms.
We are motivated by the desire to compute probability distributions of interest in queues and
related stochastic models, but of course there are many other applications. We even alow the
inverse transform to be complex-valued. However, in our error analysis we exploit the fact that
the modulus of our functions have known bounds, so that the algorithm is particularly appropriate
for probability transforms (where the bound is 1). This algorithm is evidently the first multi-
dimensional inversion algorithm in the queueing literature. However, we have learned that a
different multi-dimensional inversion algorithm intended for queueing models has recently been
developed in Russia by Frolov and Kitaev (1992). Their agorithm evidently is similar to a
multi-dimensional version of the POST-WIDDER algorithm in Abate and Whitt (1992a). Of
course, there is substantial literature on numerical transform inversion, as reviewed in Abate and
Whitt (1992a8). However, relatively little attention has been given to inversion of muilti-
dimensional transforms; for some instances, see Singhal, Vlach and Vlach (1975), Huntley and

Zinober (1979) and Shephard (1991).

We consider both continuous variables (L aplace transforms) and discrete variables (generating
functions). We thus consider three types of two-dimensiona transforms. (i) continuous-
continuous, (ii) continuous-discrete and (iii) discrete-discrete. We aso show how the formulas
can be generalized to more than two dimensions with any number of continuous and discrete

variables.

The multi-dimensional inversions obviously alows us to compute multivariate probability
distributions, as we illustrate here. However, the multi-dimensiona inversions also alow us to
calculate time-dependent probability distributions in queueing models that are not in steady state.

As an example, in this paper we invert the classical double transform expressions for the transient



workload and queue-length distributions in the M/G/1 queue; see Takacs (1962). The specia
case of the M/M/1 transient queue length has been widely studied in the literature; e.g., see Abate
and Whitt (1989). We show that our algorithm in this case is comparable in speed and accuracy
to the numerical integration of the integral representation in Abate and Whitt (1989). Moreover,
our algorithm applies equally well to the case of non-exponential service times, with no loss of
speed or accuracy. In fact, we have applied the algorithm here to calculate time-dependent
distributions in the transient BMAP/G/1 queue (with a batch Markovian arrival process) in
Lucantoni, Choudhury and Whitt (1994) and the piecewise-stationary M;/G;/1 queue in
Choudhury, Lucantoni and Whitt (1993). We plan to report on applications of the multi-

dimensional inversion algorithm to other important queueing problems in the future.

Our agorithms here is a multivariate generaization of the algorithms EULER and
LATTICE-POISSON in Abate and Whitt (1992a). We aso introduce an enhancement of those
algorithms to be able to simultaneously control the aliasing and roundoff errors. Asin Abate and
Whitt (1992a), we exploit the Fourier-series method. The general approach goes back at least to
Fettis (1955); see Abate and Whitt (1992a) for a review. For the multi-dimensional transforms,
this means that we apply the multivariate version of the Poisson summation formula, as given for
the two-dimensional continuous-continuous case in (5.47) of Abate and Whitt (1992a); also see
Good (1962). The approach is closely related to the fast Fourier transform (FFT). The ideais
relatively simple: Just as in the one-dimensional case, in the two-dimensional continuous-
continuous case we damp the given function by multiplying by a two-dimensional decaying
exponential  function and then approximate the damped function by a periodic function
constructed by aiasing. We use the two exponential parameters to control the aiasing error in
this approximation by the periodic function. The inversion formula is then the two-dimensional
Fourier series of the periodic function. This yields what we want, because the transform values

are the two-dimensional Fourier coefficients. Moreover, the two periods of the periodic function



can be chosen so that the two-dimensional Fourier seriesis a series nested within a second series,
each of them being nearly an alternating series. Hence, we can efficiently calculate each infinite
series from finitely many terms by exploiting the Euler transformation (or summation). In
practice, this usually means that it suffices to compute 100 or fewer terms of each infinite seriesto
achieve a truncation error of the order 10713 or less, see Abate and Whitt (1992a),
Johnsonbaugh (1979) and Wimp (1981). When the inverse transform is real, as with

probabilities, the overall computation can be reduced by afactor of two.

However, the above choice of the exponential parameters and the periods does not allow usto
simultaneously control the aliasing error and the roundoff error. Therefore, we choose the periods
such that every 1" term of the first series and every 19" term of the second series are nearly
alternating. Therefore, the first infinite series may be considered as the sum of |; nearly
alternating series and the second infinite series may be considered as the sum of |, nearly
alternating series. Then each aternating series may be efficiently computed using the Euler
transformation as mentioned above. The two exponential parameters of the two-dimensional
decaying exponential functions along with 1, and I, allow us to simultaneously control the

aliasing and roundoff errors, thereby achieving an accurate two-dimensional algorithm.

If one or both the dimensions are discrete, then each such dimension corresponds to the
replacement of a continuous function defined over the non-negative real line by a series defined
over the non-negative integers. Ideas similar to the continuous case apply to the discrete case,
with the decaying exponential function replaced by a decaying geometric series and the Fourier
series replaced by adiscrete Fourier series. Animportant difference in the discrete case isthat the
discrete fourier series, and hence also the corresponding inversion formula, have only finitely
many terms. Therefore, we can compute all the terms and do not need to use the Euler
transformation. However, if the number of terms in the finite series is very large (severd

hundreds or more), then we use the Euler transformation in this case aswell.



The ideas above apply to arbitrary dimensions and any mixture of discrete and continuous
variables. Indeed, one important contribution of this paper is the seamless combination of

discrete and continuous variables.

Here is how the rest of this paper is organized. In Sections2, 3 and 4, respectively, we
develop the two-dimensional inversion formulas for the continuous-continuous, continuous-
discrete and discrete-discrete cases. In Section 5 we show how the formulas can be generalized to
more than two dimensions with any number of continuous and discrete variables. It is significant
that the overal algorithm for n dimensions reduces to the iterative application of the one-

dimensional algorithm n times, in any order.

In Section 6 we apply the inversion algorithm to specific examples associated with the M/G/1
queue. We illustrate each of the variants of the algorithm in Sections 2-4. We intend to indicate
in a subsequent paper how to calculate moments and asymptotic parameters of time-dependent

probability distributions, extending the algorithm in Choudhury and Lucantoni (1994).

2. Two-Dimensional I nversion with Continuous Variables

In this section we develop the variant of our agorithm to numerically invert a two-
dimensional Laplace transform. Let f(t;,t,) be a complex-valued function of nonnegative real

variablest, andt,, and let its two-dimensional Laplace transform be

f(s1,80) = [ [e %% ¢ty t,)dtqdt, (2.1)

o3
o 3

which we assume is well defined; e.g., see Ditkin and Prudnikov (1962) or Van der Pol and
Bremmer (1955). In (2.1) s; and s, are complex variables with Re(s;) > 0 and Re(s,) > 0.

We will show how to calculate f (t4,t5) using values of f(sl,sz).



2.1 Developing the Algorithm

We start by considering Fourier transforms. Let F(t;,t,) be a complex-valued function on

R 2 with awell-defined bivariate Fourier transform

O(ug,up) = [ [ G ) dtdt, 2.2)

—00 —O00

(If F is a probability density function, then @ is its characteristic function; see pp. 521-525 of
Feller (1971).) Under regularity conditions, F can be recovered by the Fourier inversion formula

0

F(ty,tp) = 4—i[,2—_[ | e (it tala) ooy uy)dugdusy (2.3)

In the Fourier theory, F and @ constitute a Fourier pair, see Chapter 8 of Champeney (1987). Itis
significant that (2.2) and (2.3) hold in great generality provided the integrals are interpreted
properly; in particular, F need not be bounded and continuous. The regularity conditions in the
one-dimensional case are discussed in 85 of Abate and Whitt (1992a); we will not discuss the

regularity conditions here.

We now exploit the two-dimensiona Poisson summation formula

» o O on okt & = hihy ~(jhyt, +Kht,
> 3 Fleflt+ 0= 33 oora(hnky)e MY 2
j:—oo k=—o0 |:| 1 2 |:| j:—oo k=—o TT

The left side of (2.4) is constructed by aliasing to be a periodic function of t; and t, with periods
hi! and h3?!, respectively. (Aliasing means that the new function is constructed by adding
translated versions of the origina function.) Assuming that the series on the left in (2.4)
converges and that this periodic function has a proper Fourier series, the Fourier series is given
by the right side of (2.4). Hence, given that the aliased function on the left side is well defined,
the validity of (2.4) depends on the classical theory of Fourier series; see 85 of Abate and Whitt

(1992a) and Tolstov (1976). For our inversion problem, the key point is that the Fourier



transform values @(jhq,kh,) from (2.2) appear as the Fourier coefficientsin (2.4); see (5.47) of
Abate and Whitt (1992a) and p. 163 of Champeney (1987). Note that the right side of (2.4) can
be regarded as a trapezoidal rule form of numerical integration applied to the inversion integral
(2.3).

In order to contral the aliasing error, we do exponential damping; i.e., if f is our original
function of interest in (2.1), then we replace F(t;,t,) above by the function f (t;,t,) e (3% *a2t2)
whent; = 0, t, = 0 and O elsewhere. Then @(uy,u,) = f(ag—iug, as—iuy) for f in (2.1),
and the right side of (2.4) can be expressed in terms of the Laplace transform values. If, in

addition, weleth; = 1/(t111)andh, = 1/(t,1,), wherel, I, = 1, then (2.4) becomes

S 3 e OB {(142)1))t, (1+2K5)t))
j=0 k=0
—iBj_T[ + ED n n
1 o bt [jll I 0oz IJT[ ikt
= e fag————, a,———[]. 25
4|1t1|2tzj§m k:z_m [ YT T T 0 @)

If, furthermore, weleta; = A{/(2t111)anda, = A,/(2t,1,), then we get

s e MIFAN f(142)1 1)ty (1+2K ) t)

o)

j=0 k=0
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Note that we can rewrite (2.6) asf(t1,t5) = f(t;,t,) - where the value to be calculated is

O
Fltit,) = exp(A/2l,) & e—ijrt/llmexp(AZ/ZIZ) S ik,
1.2 e~ e — T
2ty 2o, o 2tz iz,
O

0
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and the error is

j=0
not j=

=ty ,t,ALA,l1l,) = zm °°z e MIHAK £01 4 251ty (1+2K5)t,) . (2.8)
k=0

From (2.7) we see that the two-dimensional formulais the iterated one-dimensional formulas.
Inparticular, if |; = I, = 1, then the expression within the bracesin (2.7) can be regarded as the
one-dimensional EULER algorithm in (5.26) of Abate and Whitt (1992a) with the one-
dimensional transform replaced by the two-dimensional transform f. Moreover, the entire
expression (2.7) can be regarded as the one-dimensiona EULER algorithm with the one-

dimensional transform replaced by the quantity in braces.

We regard € in (2.8) as the error term, which will not be explicitly computed. if
f(t1,to)0< C for some constant C and all tq,t, (C = 1if f(tq,t,) is a probability), then the
error can be bounded as follows:

-A; -A, (A +A)
Cle “*e e ) Hee™+e™). 2.9)
(1-e ")(1-e "?)

<

In order to be able to exploit the Euler summation technique for nearly aternating series, we

rewrite (2.7) as

L0
ij,Tu
exp(Ai/2l;) o 2 T Hexp(Ag/21) b
f(ty,t2) = ot 2 2 (-1)'e DT 2 2 (_1)k
'L jimlj=-e 0 272 k=1 k=-e
O
“TLOOA aTU i A kit jkr L2
< & fot 1 _IjT[, 2 IKaTU jkmt (2.10)
O

So far, we allowed f to be complex-valued. (Hence, ([ and (g should be interpreted as the

modulus.) However, if f is real-valued, then we can reduce the computations by a factor of 2 by



noting that ?(sl,sz) = f(s1,S2), where s is the complex conjugate of s. Then (2.10) can be

expressed as
OAL Ar
PO+ -0
0 2000 A, A, O
f(ty,tp) = o0 : 0
O
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Note that (2.11) contain infinite sums of the foom S = 3 (-1)*a, where ay is rea or
k=0

complex. Also, equation (2.10) contains infinite sums of the form 5 (-1) Kay, which can be

k=—o0

written as the sum of two separate sums over the nonnegative integers. Section 6 of Abate and



Whitt (1992a) explains the Euler transformation for computing infinite sums of the above form
when a, isreal; also see Davis and Rabinowitz (1984), Johnsonbaugh (1979) and Wimp (1981).

Specifically, the Euler sumwith parameters n and mis given by,

E(mn) = S + (1) 15 (= 1)ko-(+D pk N 2.12
(,) n ( ) Z( ) An+1 ZDk n+k » ( )
k=0 k=0

where,

S = kjgo(—l)kak, (2.13)

Aa; = aj41 — ajand AX is obtained by k-fold application of the forward-difference operator A.

Unfortunately, we do not have general error bounds associated with the computation E(m,n).

Asreviewed in Abate and Whitt (1992a) and Johnsonbaugh (1979), it is known that if

(-1)™AMa, 4+ is decreasing in k for k = 1, (2.14)
then
Aman+1

and an upper bound on the error in Euler sum can be obtained by computing E(m,n) and
E(m-1,n). Incaseay iscomplex and both its real and imaginary parts satisfy condition (2.14),
then (2.15) also gives a bound for complex Euler sums. However, in general it is difficult to
verify condition (2.14). Our numerical experience shows, though, that unless we compute the
inverse transform near a discontinuity, usually E(m,n) computes S with an error of the order of
1073 or less with the choice n = 38 and m = 11, i.e., requiring the computation of only 50
terms. In contrast, a straightforward computation of the infinite series by truncation after K terms

would often require K to be 10,000 or more.

As in Abate and Whitt (1992a), we use [£(m,n)—E(m-1,n)[] as an estimate of the error
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produced by applying Euler summation.
2.2 Error Control In the Inversion Algorithm

There are three sources of error in the inversion agorithms (2.10) and (2.11). We now
explain them and show how to control them. The error term € in (2.8) and (2.9) can be
interpreted either as an aliasing error, since the periodic function on the left side of (2.4) is
constructed by aliasing, or as a discretization error, since the right side of (2.4) can be interpreted
as atrapezoidal rule form of numerical integration. For the rest of the paper we refer toeonly as
aliasing error. This error may be reduced by increasing the parameters A; and A, in (2.9). For
example, if C = 1 (as in probability applications) then we can limit (g to 10°8 by choosing

A; = A, = 19.1and limititto 10712 by choosing A; = A, = 28.3.

The second source of error comes from approximating each infinite seriesin (2.10) and (2.11)
by a finite number of terms. We cal this the truncation error, even though we do not do
straightforward truncation. As explained earlier, unless we attempt to compute the inverse
transform near discontinuities, we can usually reduce the truncation error to 102 or lower by
using the Euler summation technique with about 50 terms. As indicated above, we estimate the

truncation error using (E(m,n)-E(m-21,n)0.

The third source of error is roundoff error, which is primarily due to multiplying large

UA A, [
numbers by small ones. Specificaly, the quantity exp[}% + %[V(M 1t11,t,) appearing in
0<'1 20

both (2.10) and (2.11) can be large. However, there are four parameters to control it: Aq,A,,l 4,
and |,. Since we have aready used A; and A, to control the aliasing error, weusel; and |, to
control the roundoff error. (The one-dimensiona Euler algorithm in Abate and Whitt (1992a) did
not use any parameter like | ; and | , and hence could not control the roundoff and aliasing errors

OA A, O
simultaneously.) Table 1 shows how the quantity exp[;zl_l + %D’(mltllztz) decreases
g<'1 20
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(thereby decreasing the roundoff error) with increasing | and |, (assumingt; = t, = 1). We
consider two cases with aliasing error bounds of 1078 and 10712, respectively. This bound fixes
A; and A, (assuming A; = A,) and we change | 1, |, to control the roundoff error. Note that
the cost of reducing the roundoff error is the increase in computation time which is proportional
to the product of 1, and |,. For any choice of 1, and I,, we choose A; and A, such that the
aliasing and roundoff errors are about the same order of magnitude. Our numerical experience
indicates that with1; = I, = 1 we can usualy achieve an overal accuracy of 5 or 6 digits, and
withl; = |, = 2we can usually achieve an overall accuracy of 10 or more digits. Thisis based
on a double-precision arithmetic (i.e., about 16-digit precision). For two-dimensional inversion,
usuadly 1, =1, = 2 is adequate. However, in order to achieve high accuracy with higher
dimensional inversions (to be described in Section5) we may need bigger |, and I,. In
Choudhury et al. (1993) we solved a problem with two and one dimensional inversions, but the
inversions were nested, thereby effectively amounting to an n-dimensional inversion where n

could be as large as 22. We could accurately solve that problem by choosing each |; to be 7.

3. Two-Dimensional Inversion with Discrete Variables

Let p,,n, be a double sequence of complex numbers defined on the pairs (nq,n,) of

nonnegative integers, and let G(z1,z,) be its two-dimensiona generating function, which we

assume iswell defined; i.e., paraleling (2.1), we have

G(z1,22) = 3 3 Pnn,21'2 . (3.1)
0

n,=0 n,=
We will show how to compute p,, ,, using the values of G(z;,2,).

Asin 82.1, we start by considering general Fourier transforms. Let a,, ,, be a sequence of

complex numbers on the pairs (n1,n,) of integers, and let @(uq,u,) be its discrete Fourier

transform, where
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O(uy,Up) = 5 3 age Mt (32)

n,=—o N,=—o0

Paralleling (2.4), we obtain the discrete Poisson summation formula

m, 1 m, 1 ~O02mjn, N 2mkn, O
- 5 . - 10— O
02 1 2 2 Uomj omkl gmy T Qg g
Z z an1+jmlvn2+km2_ m:m Z z m ’ m (e ( ' )
j=—o00 k== 172 -m —m; gt 2 [
J: =
2 2

The left side of (3.3) is constructed by aliasing to be a bivariate periodic sequence with periods
m4 and m,, respectively. We assume that m; and m, are even positive integers. The right side
of (3.3) is the two-dimensional discrete Fourier series of the periodic sequence on the left. In

order to control the aliasing error, we assume that a, ,, is defined in terms of our original

sequence Py, n, by

EPnlnz ri'ry forny, 20, n, =20
an,n, = O (34)

otherwise ,

wherer; is area number with 0 < r; < 1fori = 1,2. Theterm rj*ry? in (3.4) constitutes a
geometric damping, paralleling the exponential damping in 82. With (3.4), the generating

function G in (3.1) isrelated to the transform @in (3.2) by
O(ug,Uz) = G(rie", rpe') .

From (3.3), after some manipulations, we get p, n, = Pn,n, — € Where

™y 2nmijn, U M2 3 -2mikn, 2mij ik O
_ 1 2 T, 0 1 2 m, m, m,
Pn,n, = - e nz > e G(r,e , e )(3.5)
miry” . -my Omars oo M O
T2 0 T2 0

and



jmy

00 00
— km.
€= e(ml-mzlrl-rz) - Z Z n,+jm,, n,+km, 1 T2 ‘. (3-6)

If [(Pn,,n, 0= C, then

Cri™ +ro2 =l
s S TR ) gogpay) | (37)
(1-r1*)(1-r3?)

Assuming thatm; = 2l,n; andm, = 2l,n,, we can rewrite (3.5) as

Trij1

1 I,-1 n; I 0 1 I,-1 n,-1 ‘
Prn = 5 3 (mle P ot 55 -
2|lnlrl j1=0j==-ny DZ|2n2r2 k;=0 k=-n,
ik, Ti(j,+11]) i (ky +12K) =
xe 2 G(re "™ r,e ™ O (3.8)
0
0

and the upper bound in (3.7) as C(r2":™ +r3'2").

If pn,,n, isred-vaued, thenit is possible to reduce the computations by afactor of 2 by using

thefact that G(r,e"*,r,e"2) = G(rye " ,roe "), but we do not show that expression.

Note that (3.8) can be considered as an iterative application of two one-dimensiona
algorithms. When I, =1, = 1, Formula(3.8) is the two-dimensional generalization of the
algorithm LATTICE-POISSON in Abate and Whitt (1992a,b). We use |, and |, to be able to

simultaneously control the aliasing and roundoff errors.

Paralleling 82, the diasing error is controlled by reducing C(rlI nl+r2I "2) while the
roundoff error is controlled by reducing the factor 1/(4l11,nyn,ri*r5?), using the four
parameters 11,l,,r1 and r,. Since (3.8) has only finite sums, there is no truncation error.
However, if ny and n, are very large, then we can also use the Euler summation. The sumsin

(3.8) are expressed as nearly alternating series with thisin mind.
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4. One Discrete and One Continuous Variable

Now let the function of interest be f(t,n), where t is a nonnegative continuous variable and n
is a nonnegative integer. We wish to calculate f(t,n) by numerically inverting the two-
dimensional transform

f(s,2) :_[) %O F(t,n)e Xzt . 4.1

As before, we work with Fourier transforms. For this purpose, let F(t,n) be defined for real t

and integer nand let @(uq,u,) itsfourier transform, i.e.,

ouup) = [ 5 F(tne g 4.2)

-0 N=—o00

The bivariate mixed Poisson summation formulais

m _Ithanng
5 S F(t+2ﬂ N+ km) = _z z o(jh, Z_"k)e M0 43

jEmo k=-0 Mj="w  _
k=7

The left side of (4.3) is constructed to be periodic by aiasing. The right side is a Fourier series
with respect to variable t and a discrete Fourier series with respect to n. In order to control the
aliasing error we do exponential/geometric damping as follows:

%(tn)e ah - fort>=0,n=0

F(t,n
(tn) = otherwise

(4.4)

where, a >0 and 0 <r <1 Then ¢@(uq,up) = ?(a—iul,reiUZ). Letting h = 1U/(tl ),
m = 2l,n and a = A/(2tl1), after some manipulations on (4.3), we get f(t,n) = f(t,n) - &

where
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0 A D
exp |j1T[
f(t.n) = —z > (-Dle "
CE L s SR
E 1 lla-a _far O N 3 i (K, +1,K)
XL 2 2 (= 1) € T fo A M1l ijm re 2" 4.5)
021203 K =ok=-n Uort Tt Tt
0 OJ
and
> 3 e Ar¥eN((a+2jly)t, (1+2K,)n) . (4.6)
i=0k=0
not j=k=0

Now the aliasing error can be bounded by

C(e A +r22" g A2y
(1-e A)(1-r7"=")

<

= Cle™A+r2"y | (4.7)

assuming that [fo< C. The computations in (4.5) can be further reduced by a factor of 2 if

f(t,n) isreal, but we do not show the resulting expression.

Both the aliasing and roundoff errors may be controlled by the parameters A,r,l; and1,. The
infinite sum may be efficiently computed by the Euler summation technique. If nisvery large,

then the Euler summation technique may be used on the finite sum as well.

5. Arbitrary Number of Dimensions

The formulas in Sections 2-4 above can easily be generalized to an arbitrary number of
dimensions. Let f(t) be acomplex-valued function of avectort = (t,...,t;) of | nonnegative
real variables. We allow the variables to be either continuous or discrete (integer). Let Ty be a
variable indicating the type of variable k; i.e,, T, = 1if t, is continuous and T, = 2 if t is
discrete. For 1 < k < |, let |, be the appropriate integral or sum operator for the variablet,; i.e.,

let
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O
50 dtk if T =1
Ik = Dw (5.1)
Oy if Ty =2.
U, =o
O
Lets = (s1,...,S)) bethevector of | complex transform variables. For1 < k < |, let
O t
%% jf Ty =1
ay(sk.t) = O, _ (5.2)
ESk if Ty = 2.
1l
Then the multi-dimensional transform of f can be expressed as
~ [ [
f(s) = (7 1) (1) [T ak(sktx) - (5.3)
k=1 k=1

The multi-dimensional inversion formula can then be defined recursively. For this purpose,
let A, and r be positive constants, | a positive integer and [T1,1< 1. For1 < k< |, let fk be
the k-vector (j,,...,jx) associated with the I-vector j = (j1,...,]J;). Similarly, for

1< k < 1, let py bethek-vector (py, ..., px) associated with thel-vectorp = (py,...,P;).

Thentheinversion formulaisf(t) = f(t) - g wheref(t) = Foj 5 andforl < k<,

|:| —ip, T
DeA 21, 1, J ka
T z Z ( 1) ke k Fkv;krﬁk if Tk =1
_ O <telk Pe=1ji=
Fr-1j 08, = O ipe (54)

1 -1 t, -1

1. ~ .
0~ S S (-De ™ Fyjp if T =2,
BZIktkrk Pe=0ji ="t P

where
Fiis = fE), (5.5)

WithE = (§4,...,&)and
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O . .

0 Ay 3 IPTT : IJTT it T

2t tilg T k
k = O . .

H T (P +1 k)

Erke il if Ty

The error term €is then given by (in the notation of (5.3))

@ |
es >...Y f(r)(k|'| By) ,
= =1

wheret = (T4,...,T}),
Tk = te(1 + 2jly)

and

|

(| (|
~n QI

&>
= =
= -
=~ =~

| |
N B

If Of (t)O< Cforal allowed values of t, then

|
mo<eHCyY .,

k=1
where
O
™ if T, =1
Ye = Op
[:rkk : if T = 2.
O

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

Note that the continuous and discrete variables in the formulas here can be ordered in an

arbitrary way. Also note that the results of Sections 2-4 are all special cases of the formulas in

this section. As before, if f is red-valued, then it is possible to reduce the computations

somewhat, but the formulas get complicated.
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6. Numerical Examples

The main motivation for our work has been the desire to compute probability distributions of
interest in queueing models. In this section we provide a few examples associated with the
M/G/1 queue. For the most part, the transforms can al be found in Takécs (1962). Some

additional details can be found in Lucantoni et al. (1994).
6.1 TheBusy Period: Duration and Number Served

We start with the joint distribution of the number served, N, and the duration, X, of a busy
period in the M/G/1 queue. Let Gi(n) = P(N=n), Gy(Xx) =P(X<x) ad

G(n,x) = P(N=n, X < 2). We define the one-dimensional and two-dimensional transforms

Gi(2) = 3 2°Gy1(n) 6.1)
n=0

Ga(s) = [ 7%dGy(X) , (6.2)
0

G(zs) = 5 [ e ¥2"dG(nX) . 6.3)
n=0 0

Note that é(s) = é(l,s) and G(2) = é(z,O). Numerically, it is easier to work with the
Laplace transforms of the complimentary cumulative distribution functions rather than the
cumulative distribution functions (CDFs) themselves (because there is less diasing error).

Therefore, we invert the transforms éc(z,s) and éc(s), where

Gz = 5 [ e "G (nx)dx, (6.4)
n=0 0
G (s) =f e” G (x) dx , (6.5)
0

G°(n,x) = P(N=n, X > x)and G5(x) = P(X > x). It can be shown that
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G(zs) = %(C_;(z)—é(z,s)) (6.6)
G%(s) = %(1-6;(5)) . 6.7)

It iswell known that é(z,s), é(s) and G(z) satisfy the functional equations

G(z,5) = Zh(s + A-AG(z,9)) (6.8)
G(s) = h(s + A-AG(9)) (6.9)
G(2) = h(A-AG(2)) , (6.10)

where ﬁ(s) represents the Laplace-Stieltjes transform of service-time CDF; see Takécs (1962).
We compute the transforms iteratively. In Choudhury, Lucantoni and Whitt (1994) we prove that
al the iterations converge (even when server utilization is bigger than 1) if we start them at 0.
We invert the one-dimensional transforms using the algorithms in Abate and Whitt (1992a) and

the two-dimensional transform using the algorithm in Section 4.

In Figure 1 we plot, in log scale, the conditional busy-period distribution
P(X > xtN = n) = G°(n,x)/Gy(n)forn = 1, n = 5and n = 25 when the arrival rateis 0.8
and the service-time distribution is gamma with mean 1 and shape parameter 1/4. Then the
squared coefficient of variation (SCV, variance divided by the square of the mean) is4. We also
show the unconditional distribution P(X > x). Note that the conditional and the unconditional

busy-period distributions are quite different.

Also note that the conditional distributions are not straightforward to find by alternate means.
In particular, the conditional busy-period distribution is not the n-fold convolution of the service-
time distribution. However, in the specia case of deterministic service times, the conditional
busy-period distribution is just a point mass at n times the constant service time. This case is
difficult to invert numerically since the inverse transform is discontinuous. However, we have
considered the E, (Erlang of order K) service-time distribution with k up to a few hundreds and

observed that as k increases, the conditional busy-period distribution approaches that of the point
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mass mentioned above. This provides a check on the algorithm. We have also calculated the
distribution of number served conditioned on the length of the busy period, but we do not show

that here.
6.2 The Transient Queue-L ength Distribution

Next we consider the transient queue-length distribution in an M/G/1 queue. Let, Q(t)
represent the queue length at time t (including the one in service, if any). Let there be a departure
a time t =0 and a that instant let there be iy customers in the system. Let,

Yi, (n,t) = P(Q(t) = nfR(0) = ip). Consider the two-dimensional transform

Yi, (2.9) = % | 7%z (n,t)dt . (6.11)
n=0t=0

It can be shown that
9 (29 = 29" (1-h(s+A-72)) .\ (Z‘l)f’ioo(s)ﬁ(S”\—)\Z) 6.12)
o2 (s+A-A2)(z-h(s+A-A2)) z-h(s+A-\2) N
where
Bio(s) = —LCO (6.13)
S+A-AG(S) .

and éz(s) is defined in (6.2) and obtained iteratively using (6.9); see Takéacs (1962) and

Lucantoni et al. (1994).

Using the results in Section 4, we invert the transform in (6.12) and get the transient queue-
length distribution. In Figure 2 we plot in log scale this distribution at t = 5 with iy = 10 for
three different service-time distributions, each with mean 1: M (exponential), E, = I 4 (Erlang or
gamma with SCV = 1/4), and I 1,4 (gamma with SCV = 4). We note that greater service-time

variability causes a greater variability in the queue-length distribution as well.
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In Figure 3 we concentrate on the gamma service-time distribution and show the transient
distributionatt = 1, t = 5andt = 100. The steady-state distribution is also shown. Note that
the transient behavior is quite different from the steady-state behavior. Also note that the
transient tail decays faster than the steady-state tail (the latter is known to be geometric in this
case). Itisinteresting to notethat at t = 100 the transient and steady-state distributions are very

close for small n, but at large n the transient tail decays much faster than the steady-state tail.

The specia case of M/M/1 transient queue length has been studied extensively and several
algorithms have been proposed. Abate and Whitt (1989) recommend using Theorem 1 in Section
1.2 (p. 23) of Takacs (1962), which gives Y; (n,t) as a finite integral. We implemented this
algorithm using a fifth-order Romberg integration, as described in Section 4.3 of Press, Flannery,
Teukolsky and Vetterling (1988). Using double precision arithmetic, we observed that for the
example in Figure 2 this algorithm agrees with our numerical inversion algorithm up to 11 or
more significant places. Also, the two algorithms are comparable in speed (both took a few
seconds on a SUN 2 workstation to compute ten points of the distribution). Of course, the
transform inversion algorithm works for general service-time distributions as well without any
loss of speed or accuracy. (We are unaware of aternate algorithms in the M/G/1 case). We also
observed that the algorithm based on integration has problems (gets too slow or inaccurate) if tis
very large or if the server utilization is closeto 1 or exceeds 1. The transform inversion algorithm
did not have problems in any of these cases. (Of coursg, it is possible to address the problems in
the integration-based algorithm by fine tuning it based on the properties of the integrand, but we

did not do this.)
6.3 The Transient Workload Distribution

Next we consider the transient workload distribution in an M/G/1 queue. Let W(t) represent

the workload (remaining service time of all customers in the system) at timet and let W(t,x) be
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its CDF. Consider the two-dimensional transform
w(&,s) = jo jo et d, W(t,x) dt . (6.14)
It can be shown that

h(s)}'" - P,
F(E.s) = {h(s)} ,0(9) | (6.15)
£-s+A-AN(s)

where ig is the initial queue length (assuming that there has been a departure at t = 0) and

f)ioo(s) isasgivenin (6.13). We actually invert the double transform of

~C — (77 aEtasye

w (£,9) Io _[0 e sle™SWE(t,x) dx dt , (6.16)
where W€ (t,x) = 1-W(t,x). It can be shown that

e = & - W&

% : (6.17)

We do the transform inversion using the continuous-continuous variant of the algorithm in
Section 2. In Figure 4 we plot the transient workload distribution at timest = 2, t = 10 and
t = 50, assuming that the system starts empty at t = 0. The service-time distribution is gamma
with mean 1 and SCV = 4 and the server utilization is 1.5, so that W(t) - o ast - oo.

However, the transient workload is finite and Figure 4 shows how it progresses with time.
6.4 The Conditional Queue Length At Arrivals

We conclude with a discrete-discrete example to illustrate Section 3. For this purpose, let Q;
be the queue length observed by (just prior to) the | arrival. We shall calculate the conditional
probability

p|(l?) = P(Qn+m = kKiQm = 1) (6.18)

in the M/M/1 queue. The double transform of p{{) is given in Theorem 4 on p. 28 of Takacs
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(1962). We observed that there are two typographical errors in the formula. After correcting

these, we get
_ 2 2 moken - 9@[H-(A+p)77
P(z,w) EO k§0p|k Z‘w [Z-g(0)][H-*z0g(®)]
(1-2)[p=- (A +p) g(w)] [g(w)]'** (6.19)

[1-9(w0)][z-9(w)][1-Azog(w)]

where A isthe arrival rate, U isthe service rate and

9(w) = (6.20)

2\

Figure 5 plots in log scale the conditional probability distribution of the queue length
observed by the (n+1)% customer given that the first customer saw 10 in the queue (including
the onein service). We consider four cases: n = 2,n = 10, n = 100 and n = . The transient
distributions approach the steady-state distribution as n getslarge. it isinteresting to note that the
distribution drops to zero (shown by dotted line) whenever k exceeds (n +10). This is because
there cannot be more than (n+10) in the queue at the arrival instant of the (n+1)% customer

since the first arrival found 10 in the system.

We can aso study this conditional distribution in the more genera M/G/1 case using
Theorem 11 on p. 70 of Takéacs (1962), but we do not do that.
Acknowledgment Our algorithm here builds on work on one-dimensional agorithms by Joseph

Abate. We thank him for showing the way.
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Table 1. Controlling the roundoff error by the choice of |, and I,. (Here we assume that
tl = t2 = 1)



Figure 1. The conditional busy-period distribution P(X > XN = n) in the M/G/1 queuein log
scale, as a function of n when the arrival rate is 0.8 and the service-time distribution is gamma
with mean 1 and SCV 4.



Figure 2. The transient queue-length distribution P(Q(5) = nfQ(0) = 10) in the M/G/1
gueue, in log scale, as a function of the service-time distribution when the arrival rate is 0.8 and
the mean servicetimeis 1.



Figure 3. The transient queue-length distribution P(Q(t) = nQ(0) = 10) in the M/G/1
gueue, in log scale, as a function of time t when the arrival rate is 0.8 and the service-time
distribution is gamma with mean 1 and SCV 4.



Figure 4. The transient workload complementary CDF P(W(t) > xpW(0) = 0) for the
unstable M/G/1 queue with arrival rate 1.5 and gamma service-time distribution with mean 1 and
SCV 4.



Figure 5. The conditional probability of queue lengths a arrival epochs,
P(Qn+1 = kIQ1 = 10), in the M/M/1 gueue as a function of n when the traffic intensity is
p = 0.8.



