
MULTI-DIMENSIONAL TRANSFORM INVERSION
WITH APPLICATIONS TO THE TRANSIENT M/G/1 QUEUE

by

Gagan L. Choudhury,1 David M. Lucantoni2 and Ward Whitt3

AT&T Bell Laboratories

June 15, 1993

Revision: November 19, 1993

1 AT&T Bell Laboratories, Room 3K-603, Holmdel, NJ 07733-3030
gagan@buckaroo.att.com

2 AT&T Bell Laboratories, Room 3K-601, Holmdel, NJ 07733-3030
dave@buckaroo.att.com

3 AT&T Bell Laboratories, Room 2C-178, Murray Hill, NJ 07974-0636
wow@research.att.com

Abstract

We develop an algorithm for numerically inverting multi-dimensional transforms. Our

algorithm applies to any number of continuous variables (Laplace transforms) and discrete

variables (generating functions). We use the Fourier-series method; i.e., the inversion formula is

the Fourier series of a periodic function constructed by aliasing. This amounts to an application

of the Poisson summation formula. By appropriately exponentially damping the given function,

we control the aliasing error. We choose the periods of the multi-dimensional periodic function

so that each infinite series is a finite sum of nearly alternating infinite series; then we apply the

Euler transformation to compute the infinite series from finitely many terms. The multi-

dimensional inversion algorithm enables us, evidently for the first time, to quickly and accurately

calculate probability distributions from several classical transforms in queueing theory. For

example, we apply our algorithm to invert the two-dimensional transforms of the joint

distribution of the duration of a busy period and the number served in that busy period, and the

time-dependent of the transient queue-length and workload distributions, in the M/G/1 queue. In

other related work, we have applied the inversion algorithms here to calculate time-dependent

distributions in the transient BMAP/G/1 queue (with a batch Markovian arrival process) and the

piecewise-stationary M t / G t /1 queue.

Keywords: numerical transform inversion, Laplace transforms, generating functions, multi-

dimensional transforms, Fourier transforms, Fourier-series method, Poisson summation formula,

M/G/1 queue, transient distributions.

1980 AMS subject classification: 65D30, 60K25.

1. Introduction

In this paper we present an algorithm for numerically inverting multi-dimensional transforms.

We are motivated by the desire to compute probability distributions of interest in queues and

related stochastic models, but of course there are many other applications. We even allow the

inverse transform to be complex-valued. However, in our error analysis we exploit the fact that

the modulus of our functions have known bounds, so that the algorithm is particularly appropriate

for probability transforms (where the bound is 1). This algorithm is evidently the first multi-

dimensional inversion algorithm in the queueing literature. However, we have learned that a

different multi-dimensional inversion algorithm intended for queueing models has recently been

developed in Russia by Frolov and Kitaev (1992). Their algorithm evidently is similar to a

multi-dimensional version of the POST-WIDDER algorithm in Abate and Whitt (1992a). Of

course, there is substantial literature on numerical transform inversion, as reviewed in Abate and

Whitt (1992a). However, relatively little attention has been given to inversion of multi-

dimensional transforms; for some instances, see Singhal, Vlach and Vlach (1975), Huntley and

Zinober (1979) and Shephard (1991).

We consider both continuous variables (Laplace transforms) and discrete variables (generating

functions). We thus consider three types of two-dimensional transforms: (i) continuous-

continuous, (ii) continuous-discrete and (iii) discrete-discrete. We also show how the formulas

can be generalized to more than two dimensions with any number of continuous and discrete

variables.

The multi-dimensional inversions obviously allows us to compute multivariate probability

distributions, as we illustrate here. However, the multi-dimensional inversions also allow us to

calculate time-dependent probability distributions in queueing models that are not in steady state.

As an example, in this paper we invert the classical double transform expressions for the transient

- 2 -

workload and queue-length distributions in the M/G/1 queue; see Taka ́ cs (1962). The special

case of the M/M/1 transient queue length has been widely studied in the literature; e.g., see Abate

and Whitt (1989). We show that our algorithm in this case is comparable in speed and accuracy

to the numerical integration of the integral representation in Abate and Whitt (1989). Moreover,

our algorithm applies equally well to the case of non-exponential service times, with no loss of

speed or accuracy. In fact, we have applied the algorithm here to calculate time-dependent

distributions in the transient BMAP/G/1 queue (with a batch Markovian arrival process) in

Lucantoni, Choudhury and Whitt (1994) and the piecewise-stationary M t / G t / 1 queue in

Choudhury, Lucantoni and Whitt (1993). We plan to report on applications of the multi-

dimensional inversion algorithm to other important queueing problems in the future.

Our algorithms here is a multivariate generalization of the algorithms EULER and

LATTICE-POISSON in Abate and Whitt (1992a). We also introduce an enhancement of those

algorithms to be able to simultaneously control the aliasing and roundoff errors. As in Abate and

Whitt (1992a), we exploit the Fourier-series method. The general approach goes back at least to

Fettis (1955); see Abate and Whitt (1992a) for a review. For the multi-dimensional transforms,

this means that we apply the multivariate version of the Poisson summation formula, as given for

the two-dimensional continuous-continuous case in (5.47) of Abate and Whitt (1992a); also see

Good (1962). The approach is closely related to the fast Fourier transform (FFT). The idea is

relatively simple: Just as in the one-dimensional case, in the two-dimensional continuous-

continuous case we damp the given function by multiplying by a two-dimensional decaying

exponential function and then approximate the damped function by a periodic function

constructed by aliasing. We use the two exponential parameters to control the aliasing error in

this approximation by the periodic function. The inversion formula is then the two-dimensional

Fourier series of the periodic function. This yields what we want, because the transform values

are the two-dimensional Fourier coefficients. Moreover, the two periods of the periodic function

- 3 -

can be chosen so that the two-dimensional Fourier series is a series nested within a second series,

each of them being nearly an alternating series. Hence, we can efficiently calculate each infinite

series from finitely many terms by exploiting the Euler transformation (or summation). In

practice, this usually means that it suffices to compute 100 or fewer terms of each infinite series to

achieve a truncation error of the order 10 − 13 or less; see Abate and Whitt (1992a),

Johnsonbaugh (1979) and Wimp (1981). When the inverse transform is real, as with

probabilities, the overall computation can be reduced by a factor of two.

However, the above choice of the exponential parameters and the periods does not allow us to

simultaneously control the aliasing error and the roundoff error. Therefore, we choose the periods

such that every l1
th term of the first series and every l2

th term of the second series are nearly

alternating. Therefore, the first infinite series may be considered as the sum of l 1 nearly

alternating series and the second infinite series may be considered as the sum of l 2 nearly

alternating series. Then each alternating series may be efficiently computed using the Euler

transformation as mentioned above. The two exponential parameters of the two-dimensional

decaying exponential functions along with l 1 and l 2 allow us to simultaneously control the

aliasing and roundoff errors, thereby achieving an accurate two-dimensional algorithm.

If one or both the dimensions are discrete, then each such dimension corresponds to the

replacement of a continuous function defined over the non-negative real line by a series defined

over the non-negative integers. Ideas similar to the continuous case apply to the discrete case,

with the decaying exponential function replaced by a decaying geometric series and the Fourier

series replaced by a discrete Fourier series. An important difference in the discrete case is that the

discrete fourier series, and hence also the corresponding inversion formula, have only finitely

many terms. Therefore, we can compute all the terms and do not need to use the Euler

transformation. However, if the number of terms in the finite series is very large (several

hundreds or more), then we use the Euler transformation in this case as well.

- 4 -

The ideas above apply to arbitrary dimensions and any mixture of discrete and continuous

variables. Indeed, one important contribution of this paper is the seamless combination of

discrete and continuous variables.

Here is how the rest of this paper is organized. In Sections 2, 3 and 4, respectively, we

develop the two-dimensional inversion formulas for the continuous-continuous, continuous-

discrete and discrete-discrete cases. In Section 5 we show how the formulas can be generalized to

more than two dimensions with any number of continuous and discrete variables. It is significant

that the overall algorithm for n dimensions reduces to the iterative application of the one-

dimensional algorithm n times, in any order.

In Section 6 we apply the inversion algorithm to specific examples associated with the M/G/1

queue. We illustrate each of the variants of the algorithm in Sections 2-4. We intend to indicate

in a subsequent paper how to calculate moments and asymptotic parameters of time-dependent

probability distributions, extending the algorithm in Choudhury and Lucantoni (1994).

2. Two-Dimensional Inversion with Continuous Variables

In this section we develop the variant of our algorithm to numerically invert a two-

dimensional Laplace transform. Let f (t 1 , t 2) be a complex-valued function of nonnegative real

variables t 1 and t 2 , and let its two-dimensional Laplace transform be

f̃ (s 1 ,s 2) =
0
∫
∞

0
∫
∞

e − (s 1 t 1 + s 2 t 2) f (t 1 , t 2) dt 1 dt 2 , (2.1)

which we assume is well defined; e.g., see Ditkin and Prudnikov (1962) or Van der Pol and

Bremmer (1955). In (2.1) s 1 and s 2 are complex variables with Re(s 1) > 0 and Re (s 2) > 0.

We will show how to calculate f (t 1 , t 2) using values of f̃ (s 1 ,s 2).

- 5 -

2.1 Developing the Algorithm

We start by considering Fourier transforms. Let F(t 1 , t 2) be a complex-valued function on

R 2 with a well-defined bivariate Fourier transform

φ(u 1 ,u 2) =
− ∞
∫
∞

− ∞
∫
∞

e i(t 1 u 1 + t 2 u 2) F(t 1 , t 2) dt 1 dt 2 , (2.2)

(If F is a probability density function, then φ is its characteristic function; see pp. 521-525 of

Feller (1971).) Under regularity conditions, F can be recovered by the Fourier inversion formula

F(t 1 , t 2) =
4π2

1_ ___
− ∞
∫
∞

− ∞
∫
∞

e − i(t 1 u 1 + t 2 u 2) φ(u 1 ,u 2) du 1 du 2 ; (2.3)

In the Fourier theory, F and φ constitute a Fourier pair, see Chapter 8 of Champeney (1987). It is

significant that (2.2) and (2.3) hold in great generality provided the integrals are interpreted

properly; in particular, F need not be bounded and continuous. The regularity conditions in the

one-dimensional case are discussed in §5 of Abate and Whitt (1992a); we will not discuss the

regularity conditions here.

We now exploit the two-dimensional Poisson summation formula

j = − ∞
Σ
∞

k = − ∞
Σ
∞

F



t 1 +

h 1

2π j_ ___ , t 2 +
h 2

2πk_ ___




=
j = − ∞
Σ
∞

k = − ∞
Σ
∞

4π2

h 1 h 2_ _____ φ(j h 1 ,kh 2) e − (j h 1 t 1 + kh2 t 2) . (2.4)

The left side of (2.4) is constructed by aliasing to be a periodic function of t 1 and t 2 with periods

h1
− 1 and h2

− 1 , respectively. (Aliasing means that the new function is constructed by adding

translated versions of the original function.) Assuming that the series on the left in (2.4)

converges and that this periodic function has a proper Fourier series, the Fourier series is given

by the right side of (2.4). Hence, given that the aliased function on the left side is well defined,

the validity of (2.4) depends on the classical theory of Fourier series; see §5 of Abate and Whitt

(1992a) and Tolstov (1976). For our inversion problem, the key point is that the Fourier

- 6 -

transform values φ(j h 1 ,kh 2) from (2.2) appear as the Fourier coefficients in (2.4); see (5.47) of

Abate and Whitt (1992a) and p. 163 of Champeney (1987). Note that the right side of (2.4) can

be regarded as a trapezoidal rule form of numerical integration applied to the inversion integral

(2.3).

In order to control the aliasing error, we do exponential damping; i.e., if f is our original

function of interest in (2.1), then we replace F(t 1 , t 2) above by the function f (t 1 , t 2) e − (a 1 t 1 + a 2 t 2)

when t 1 ≥ 0 , t 2 ≥ 0 and 0 elsewhere. Then φ(u 1 ,u 2) = f̃ (a 1 − iu 1 , a 2 − iu 2) for f̃ in (2.1),

and the right side of (2.4) can be expressed in terms of the Laplace transform values. If, in

addition, we let h 1 = π/(t 1 l 1) and h 2 = π/(t 2 l 2), where l 1 , l 2 ≥ 1, then (2.4) becomes

j = 0
Σ
∞

k = 0
Σ
∞

e − [a 1 (1 + 2 j l 1) t 1 + a 2 (1 + 2kl2) t 2] f ((1 + 2 j l 1) t 1 , (1 + 2kl 2) t 2)

=
4l 1 t 1 l 2 t 2

1_ _________
j = − ∞
Σ
∞

k = − ∞
Σ
∞

e
− i



 l 1

jπ_ __ +
l 2

kπ_ ___


 f̃




a 1 −

l 1 t 1

i jπ_ ____ , a 2 −
l 2 t 2

ikπ_ ____




. (2.5)

If, furthermore, we let a 1 = A 1 /(2t 1 l 1) and a 2 = A 2 /(2t 2 l 2), then we get

j = 0
Σ
∞

k = 0
Σ
∞

e − (A 1 j + A 2 k) f ((1 + 2 j l 1) t 1 , (1 + 2kl 2) t 2)

=
4l 1 t 1 l 2 t 2

exp


 2l 1

A 1_ ___ +
2l 2

A 2_ ___


_ ________________

j = − ∞
Σ
∞

k = − ∞
Σ
∞

e
− i



 l 1

jπ_ __ +
l 2

kπ_ ___


 f̃



 2l 1 t 1

A 1_ _____ −
l 1 t 1

i jπ_ ____ ,
2l 2 t 2

A 2_ _____ −
l 2 t 2

ikπ_ ____




. (2.6)

Note that we can rewrite (2.6) as f (t 1 , t 2) = f
_
(t 1 , t 2) − e

_
, where the value to be calculated is

f
_
(t 1 , t 2) =

2l 1 t 1

exp (A 1 /2l 1)_ ___________
j = − ∞
Σ
∞

e − i jπ/ l 1







2l 2 t 2

exp (A 2 /2l 2)_ ___________
k = − ∞
Σ
∞

e − ikπ/ l 2

×




f̃


 2l 1 t 1

A 1_ _____ −
l 1 t 1

i jπ_ ____ ,
2l 2 t 2

A 2_ _____ −
l 2 t 2

ikπ_ ____















(2.7)

- 7 -

and the error is

e
_

≡ e
_

(t 1 , t 2 ,A 1 ,A 2 , l 1 , l 2) =

not j = k = 0
j = 0 k = 0
Σ Σ

∞ ∞
e − (A 1 j + A 2 k) f ((1 + 2 j l 1) t 1 , (1 + 2kl 2) t 2) . (2.8)

From (2.7) we see that the two-dimensional formula is the iterated one-dimensional formulas.

In particular, if l 1 = l 2 = 1, then the expression within the braces in (2.7) can be regarded as the

one-dimensional EULER algorithm in (5.26) of Abate and Whitt (1992a) with the one-

dimensional transform replaced by the two-dimensional transform f̃. Moreover, the entire

expression (2.7) can be regarded as the one-dimensional EULER algorithm with the one-

dimensional transform replaced by the quantity in braces.

We regard e
_

in (2.8) as the error term, which will not be explicitly computed. if

f (t 1 , t 2) ≤ C for some constant C and all t 1 , t 2 (C = 1 if f (t 1 , t 2) is a probability), then the

error can be bounded as follows:

e
_
 ≤

(1 − e − A 1) (1 − e − A 2)

C(e − A 1 + e − A 2 − e − (A 1 + A 2))_ _______________________ ∼∼ C(e − A 1 + e − A 2) . (2.9)

In order to be able to exploit the Euler summation technique for nearly alternating series, we

rewrite (2.7) as

f
_
(t 1 , t 2) =

2l 1 t 1

exp (A 1 /2l 1)_ ___________
j 1 = 1
Σ
l 1

j = − ∞
Σ
∞

(− 1) j e
−

l 1

i j 1 π_ ____






2l 2 t 2

exp (A 2 /2l 2)_ ___________
k1 = 1
Σ
l 2

k = − ∞
Σ
∞

(− 1) k

×
l 2

e − ik1 π
_ _____ f̃



 2l 1 t 1

A 1_ _____ −
l 1 t 1

i j 1 π_ ____ −
t 1

i jπ_ ___ ,
2l 2 t 2

A 2_ _____ −
l 2 t 2

ik 1 π_ ____ −
t 2

ikπ_ ___










. (2.10)

So far, we allowed f to be complex-valued. (Hence, f and e
_
 should be interpreted as the

modulus.) However, if f is real-valued, then we can reduce the computations by a factor of 2 by

- 8 -

noting that f̃ (s
_

1 ,s
_

2) = f̃ (s 1 ,s 2)

, where s
_

is the complex conjugate of s. Then (2.10) can be

expressed as

f
_
(t 1 , t 2) =

4t 1 l 1 t 2 l 2

exp


 2l 1

A 1_ ___ +
2l 2

A 2_ ___


_ _______________







f̃


 2t 1 l 1

A 1_ _____ ,
2t 2 l 2

A 2_ _____




+ 2
k1 = 1
Σ
l 2

k = 0
Σ
∞

(− 1) k Re




e − ik1 π/ l 2 f̃



 2t 1 l 1

A 1_ _____ ,
2t 2 l 2

A 2_ _____ −
t 2 l 2

ik 1 π_ ____ −
t 2

ikπ_ ___









+ 2
j 1 = 1
Σ
l 1

j = 0
Σ
∞

(− 1) j Re







k1 = 1
Σ
l 2

k = 0
Σ
∞

(− 1) ke
−



 l 1

i j 1 π_ ____ +
l 2

ik1 π_ ____




× f̃


 2t 1 l 1

A 1_ _____ −
t 1 l 1

i j 1 π_ ____ −
t 1

i jπ_ ___ ,
2t 2 l 2

A 2_ _____ −
t 2 l 2

ik 1 π_ ____ −
t 2

ikπ_ ___










+ 2
j 1 = 1
Σ
l 1

j = 0
Σ
∞

(− 1) j Re




e − i j 1 π/ l 1 f̃



 2t 1 l 1

A 1_ _____ −
t 1 l 1

i j 1 π_ ____ −
t 1

i jπ_ ___ ,
2t 2 l 2

A 2_ _____




+
k1 = 1
Σ
l 2

k = 0
Σ
∞

(− 1) ke
−



 l 1

i j 1 π_ ____ −
l 2

ik1 π_ ____




× f̃


 2t 1 l 1

A 1_ _____ −
t 1 l 1

i j 1 π_ ____ −
t 1

i jπ_ ___ ,
2t 2 l 2

A 2_ _____ +
t 2 l 2

ik 1 π_ ____ +
t 2

ikπ_ ___















. (2.11)

Note that (2.11) contain infinite sums of the form S =
k = 0
Σ
∞

(− 1) ka k where a k is real or

complex. Also, equation (2.10) contains infinite sums of the form
k = − ∞
Σ
∞

(− 1) ka k , which can be

written as the sum of two separate sums over the nonnegative integers. Section 6 of Abate and

- 9 -

Whitt (1992a) explains the Euler transformation for computing infinite sums of the above form

when a k is real; also see Davis and Rabinowitz (1984), Johnsonbaugh (1979) and Wimp (1981).

Specifically, the Euler sum with parameters n and m is given by,

E(m ,n) = S n + (− 1) n + 1

k = 0
Σ

m − 1
(− 1) k 2 − (k + 1) ∆ka n + 1 =

k = 0
Σ
m 

 k
m

2 − mS n + k , (2.12)

where,

S j =
k = 0
Σ
j

(− 1) ka k , (2.13)

∆a j = a j + 1 − a j and ∆k is obtained by k-fold application of the forward-difference operator ∆.

Unfortunately, we do not have general error bounds associated with the computation E(m ,n).

As reviewed in Abate and Whitt (1992a) and Johnsonbaugh (1979), it is known that if

(− 1) m ∆ma n + k is decreasing in k for k ≥ 1 , (2.14)

then

E(m ,n) − S ≤
2m

∆ma n + 1_ _______ = E(m ,n) − E(m − 1 ,n) , (2.15)

and an upper bound on the error in Euler sum can be obtained by computing E(m ,n) and

E(m − 1 ,n). In case a k is complex and both its real and imaginary parts satisfy condition (2.14),

then (2.15) also gives a bound for complex Euler sums. However, in general it is difficult to

verify condition (2.14). Our numerical experience shows, though, that unless we compute the

inverse transform near a discontinuity, usually E(m ,n) computes S with an error of the order of

10 − 13 or less with the choice n = 38 and m = 11, i.e., requiring the computation of only 50

terms. In contrast, a straightforward computation of the infinite series by truncation after K terms

would often require K to be 10,000 or more.

As in Abate and Whitt (1992a), we use E(m ,n) − E(m − 1 ,n) as an estimate of the error

- 10 -

produced by applying Euler summation.

2.2 Error Control In the Inversion Algorithm

There are three sources of error in the inversion algorithms (2.10) and (2.11). We now

explain them and show how to control them. The error term e
_

in (2.8) and (2.9) can be

interpreted either as an aliasing error, since the periodic function on the left side of (2.4) is

constructed by aliasing, or as a discretization error, since the right side of (2.4) can be interpreted

as a trapezoidal rule form of numerical integration. For the rest of the paper we refer to e
_

only as

aliasing error. This error may be reduced by increasing the parameters A 1 and A 2 in (2.9). For

example, if C = 1 (as in probability applications) then we can limit e
_
 to 10 − 8 by choosing

A 1 = A 2 = 19. 1 and limit it to 10 − 12 by choosing A 1 = A 2 = 28. 3.

The second source of error comes from approximating each infinite series in (2.10) and (2.11)

by a finite number of terms. We call this the truncation error, even though we do not do

straightforward truncation. As explained earlier, unless we attempt to compute the inverse

transform near discontinuities, we can usually reduce the truncation error to 10 − 13 or lower by

using the Euler summation technique with about 50 terms. As indicated above, we estimate the

truncation error using E(m ,n) − E(m − 1 ,n) .

The third source of error is roundoff error, which is primarily due to multiplying large

numbers by small ones. Specifically, the quantity exp


 2l 1

A 1_ ___ +
2l 2

A 2_ ___




/(4l 1 t 1 l 2 t 2) appearing in

both (2.10) and (2.11) can be large. However, there are four parameters to control it: A 1 ,A 2 , l 1 ,

and l 2 . Since we have already used A 1 and A 2 to control the aliasing error, we use l 1 and l 2 to

control the roundoff error. (The one-dimensional Euler algorithm in Abate and Whitt (1992a) did

not use any parameter like l 1 and l 2 and hence could not control the roundoff and aliasing errors

simultaneously.) Table 1 shows how the quantity exp


 2l 1

A 1_ ___ +
2l 2

A 2_ ___




/(4l 1 t 1 l 2 t 2) decreases

- 11 -

(thereby decreasing the roundoff error) with increasing l 1 and l 2 (assuming t 1 = t 2 = 1). We

consider two cases with aliasing error bounds of 10 − 8 and 10 − 12 , respectively. This bound fixes

A 1 and A 2 (assuming A 1 = A 2) and we change l 1 , l 2 to control the roundoff error. Note that

the cost of reducing the roundoff error is the increase in computation time which is proportional

to the product of l 1 and l 2 . For any choice of l 1 and l 2 , we choose A 1 and A 2 such that the

aliasing and roundoff errors are about the same order of magnitude. Our numerical experience

indicates that with l 1 = l 2 = 1 we can usually achieve an overall accuracy of 5 or 6 digits, and

with l 1 = l 2 = 2 we can usually achieve an overall accuracy of 10 or more digits. This is based

on a double-precision arithmetic (i.e., about 16-digit precision). For two-dimensional inversion,

usually l 1 = l 2 = 2 is adequate. However, in order to achieve high accuracy with higher

dimensional inversions (to be described in Section 5) we may need bigger l 1 and l 2 . In

Choudhury et al. (1993) we solved a problem with two and one dimensional inversions, but the

inversions were nested, thereby effectively amounting to an n-dimensional inversion where n

could be as large as 22. We could accurately solve that problem by choosing each l i to be 7.

3. Two-Dimensional Inversion with Discrete Variables

Let p n 1 n 2
be a double sequence of complex numbers defined on the pairs (n 1 ,n 2) of

nonnegative integers, and let G(z 1 ,z 2) be its two-dimensional generating function, which we

assume is well defined; i.e., paralleling (2.1), we have

G(z 1 ,z 2) =
n 1 = 0
Σ
∞

n 2 = 0
Σ
∞

p n 1 n 2
z1

n 1 z2
n 2 . (3.1)

We will show how to compute p n 1 n 2
using the values of G(z 1 ,z 2).

As in §2.1, we start by considering general Fourier transforms. Let a n 1 ,n 2
be a sequence of

complex numbers on the pairs (n 1 ,n 2) of integers, and let φ(u 1 ,u 2) be its discrete Fourier

transform, where

- 12 -

φ(u 1 ,u 2) =
n 1 = − ∞

Σ
∞

n 2 = − ∞
Σ
∞

a n 1 n 2
e i(u 1 n 1 + u 2 n 2) . (3.2)

Paralleling (2.4), we obtain the discrete Poisson summation formula

j = − ∞
Σ
∞

k = − ∞
Σ
∞

a n 1 + j m 1 ,n 2 + km 2
=

m 1 m 2

1_ _____

j =
2

− m 1_ ____

Σ
2

m 1_ ___ − 1

k =
2

− m 2_ ____

Σ
2

m 2_ ___ − 1

φ


 m 1

2π j_ ___ ,
m 2

2πk_ ___



e

− i


 m 1

2π j n 1_ ______ +
m 2

2πkn2_ ______


 .(3.3)

The left side of (3.3) is constructed by aliasing to be a bivariate periodic sequence with periods

m 1 and m 2 , respectively. We assume that m 1 and m 2 are even positive integers. The right side

of (3.3) is the two-dimensional discrete Fourier series of the periodic sequence on the left. In

order to control the aliasing error, we assume that a n 1 n 2
is defined in terms of our original

sequence p n 1 n 2
by

a n 1 n 2
=





0

p n 1 n 2

otherwise ,

r1
n 1 r2

n 2 for n 1 ≥ 0 , n 2 ≥ 0
(3.4)

where r i is a real number with 0 < r i < 1 for i = 1 , 2. The term r1
n 1 r2

n 2 in (3.4) constitutes a

geometric damping, paralleling the exponential damping in §2. With (3.4), the generating

function G in (3.1) is related to the transform φ in (3.2) by

φ(u 1 ,u 2) = G(r 1 e iu 1 , r 2 e iu 2) .

From (3.3), after some manipulations, we get p n 1 n 2
= p

_
n 1 n 2

− e
_
, where

p
_

n 1 ,n 2
=

m 1 r1
n 1

1_ _____

j =
2

− m 1_ ____

Σ
2

m 1_ ___ − 1

e
−

m 1

2πi j n 1_ ______






m 2 r2
n 2

1_ _____

k = −
2

m 2_ ___

Σ
2

m 2_ ___ − 1

e m 2

− 2πikn2_ ________

G(r 1 e m 1

2πi j_ ____

, r 2 e m 2

2πik_ ____

)







(3.5)

and

- 13 -

e ≡ e(m 1 ,m 2 ,r 1 ,r 2) =

not j = k = 0
j = 0 k = 0
Σ Σ

∞ ∞
p n 1 + j m 1 ,n 2 + km 2

r1
j m 1 r2

km 2 . (3.6)

If p n 1 ,n 2  ≤ C 2 then

e
_
 ≤

(1 − r1
m 1) (1 − r2

m 2)

C(r1
m 1 + r2

m 2 − r1
m 1 r2

m 2)_ __________________ ∼∼ C(r1
m 1 + r2

m 2) . (3.7)

Assuming that m 1 = 2l 1 n 1 and m 2 = 2l 2 n 2 , we can rewrite (3.5) as

p
_

n 1 ,n 2
=

2l 1 n 1 r1
n 1

1_ ________
j 1 = 0
Σ

l 1 − 1

j = − n 1

Σ
n i − 1

(− 1) j e
−

l 1

πi j 1_ ____ 

 2l 2 n 2 r2

n 2

1_ ________
k1 = 0
Σ

l 2 − 1

k = − n 2

Σ
n 2 − 1

(− 1) k

×e
−

l 2

πik1_ ____

G(r 1 e l 1 n 1

πi(j 1 + l 1 j)_ __________

, r 2 e l 2 n 2

πi(k1 + l 2 k)_ __________

)







(3.8)

and the upper bound in (3.7) as C(r1
2l 1 n 1 + r2

2l 2 n 2).

If p n 1 ,n 2
is real-valued, then it is possible to reduce the computations by a factor of 2 by using

the fact that G(r 1 e iu 1 ,r 2 e iu 2)
_ ______________

= G(r 1 e − iu 1 ,r 2 e − u 2), but we do not show that expression.

Note that (3.8) can be considered as an iterative application of two one-dimensional

algorithms. When l 1 = l 2 = 1, Formula (3.8) is the two-dimensional generalization of the

algorithm LATTICE-POISSON in Abate and Whitt (1992a,b). We use l 1 and l 2 to be able to

simultaneously control the aliasing and roundoff errors.

Paralleling §2, the aliasing error is controlled by reducing C(r1
2l 1 n 1 + r2

2l 2 n 2), while the

roundoff error is controlled by reducing the factor 1/(4l 1 l 2 n 1 n 2 r1
n 1 r2

n 2), using the four

parameters l 1 , l 2 ,r 1 and r 2 . Since (3.8) has only finite sums, there is no truncation error.

However, if n 1 and n 2 are very large, then we can also use the Euler summation. The sums in

(3.8) are expressed as nearly alternating series with this in mind.

- 14 -

4. One Discrete and One Continuous Variable

Now let the function of interest be f (t ,n), where t is a nonnegative continuous variable and n

is a nonnegative integer. We wish to calculate f (t ,n) by numerically inverting the two-

dimensional transform

f̃ (s ,z) =
0
∫
∞

n = 0
Σ
∞

f (t ,n) e − stz ndt . (4.1)

As before, we work with Fourier transforms. For this purpose, let F(t ,n) be defined for real t

and integer n and let φ(u 1 ,u 2) its fourier transform, i.e.,

φ(u 1 ,u 2) =
− ∞
∫
∞

n = − ∞
Σ
∞

F(t ,n) e i(u 1 t + u 2 n) dt . (4.2)

The bivariate mixed Poisson summation formula is

j = − ∞
Σ
∞

k = − ∞
Σ
∞

F(t +
h

2π j_ ___ , n + km) =
2πm

h_ ____
j = − ∞
Σ
∞

k = −
2
m_ __

Σ
2
m_ __ − 1

φ(j h ,
m

2πk_ ___) e
− i




j ht +

m
2πkn_ _____



 . (4.3)

The left side of (4.3) is constructed to be periodic by aliasing. The right side is a Fourier series

with respect to variable t and a discrete Fourier series with respect to n. In order to control the

aliasing error we do exponential/geometric damping as follows:

F(t ,n) =


0

f (t ,n) e − atr n

otherwise ,

for t ≥ 0 , n ≥ 0 (4.4)

where, a > 0 and 0 < r < 1. Then φ(u 1 ,u 2) = f̃ (a − iu 1 ,re iu 2). Letting h = π/(tl 1),

m = 2l 2 n and a = A /(2tl 1), after some manipulations on (4.3), we get f (t ,n) = f
_
(t ,n) − e

_
,

where

- 15 -

f
_
(t ,n) =

2l 1 t

exp


 2l 1

A_ ___


_ _________

j 1 = 1
Σ
l 1

j = − ∞
Σ
∞

(− 1) j e
−

l 1

i j 1 π_ ____

×







2l 2 nr2
n

1_ ______
k1 = 0
Σ

l 2 − 1

k = − n
Σ

n − 1
(− 1) ke

−
l 2

ik1 π_ ____

f̃



 2l 1 t

A_ ____ −
l 1 t

i j 1 π_ ____ −
t

i jπ_ ___ , re l 2 n

πi(k1 + l 2 k)_ __________











(4.5)

and

e
_

=

not j = k = 0
j = 0 k = 0
Σ Σ

∞ ∞
e − A j r 2kl2 nf ((1 + 2 j l 1) t , (1 + 2kl 2) n) . (4.6)

Now the aliasing error can be bounded by

e
_
 ≤

(1 − e − A) (1 − r 2l 2 n)

C(e − A + r 2l 2 n − e − Ar 2l 2 n)_ _____________________ �

� C(e − A + r 2l 2 n) , (4.7)

assuming that f ≤ C. The computations in (4.5) can be further reduced by a factor of 2 if

f (t ,n) is real, but we do not show the resulting expression.

Both the aliasing and roundoff errors may be controlled by the parameters A ,r , l 1 and l 2 . The

infinite sum may be efficiently computed by the Euler summation technique. If n is very large,

then the Euler summation technique may be used on the finite sum as well.

5. Arbitrary Number of Dimensions

The formulas in Sections 2-4 above can easily be generalized to an arbitrary number of

dimensions. Let f (t) be a complex-valued function of a vector t ≡ (t 1 , . . . , t l) of l nonnegative

real variables. We allow the variables to be either continuous or discrete (integer). Let T k be a

variable indicating the type of variable k; i.e., T k = 1 if t k is continuous and T k = 2 if t k is

discrete. For 1 ≤ k ≤ l, let I k be the appropriate integral or sum operator for the variable t k; i.e.,

let

- 16 -

I k =









t k = 0
Σ
∞

∫
0

∞
dt k

if T k = 2 .

if T k = 1

(5.1)

Let s ≡ (s 1 , . . . , s l) be the vector of l complex transform variables. For 1 ≤ k ≤ l, let

α k (s k , t k) =






sk

t k

e − s k t k

if T k = 2 .

if T k = 1
(5.2)

Then the multi-dimensional transform of f can be expressed as

f̃ (s) = (
k = 1
Π

l
I k) f (t)

k = 1
Π

l
α k (s k , t k) . (5.3)

The multi-dimensional inversion formula can then be defined recursively. For this purpose,

let A k and r k be positive constants, l k a positive integer and r k < 1. For 1 ≤ k ≤ l, let ĵ k be

the k-vector (j 1 , . . . , j k) associated with the l-vector j ≡ (j 1 , . . . , j l). Similarly, for

1 ≤ k ≤ l, let p̂ k be the k-vector (p 1 , . . . , p k) associated with the l-vector p = (p 1 , . . . , p l).

Then the inversion formula is f (t) = f
_
(t) − e

_
, where f

_
(t) ≡ F 0 , ĵ 0 ,p̂ 0

and for 1 ≤ k ≤ l,

F k − 1 , ĵ k − 1 ,p̂ k − 1
=











2l k t k rk
t k

1_ _______
p k = 0
Σ

l k − 1

j k = − t k

Σ
t k − 1

(− 1) j k e
−

l k

ip k π_ ____

F k, ĵ k ,p̂ k
if T k = 2 ,

2t k l k

e A k /2l k

_ _____
p k = 1
Σ
l k

j k = − ∞
Σ
∞

(− 1) j k e l k

− ip k π_ ______

F k, ĵ k ,p̂ k
if T k = 1

(5.4)

where

F l, ĵ l ,p̂ l
= f̃ (ξ ξ) , (5.5)

with ξ ξ = (ξ 1 , . . . , ξ l) and

- 17 -

ξ k =








r k e l k t k

πi(p k + l k j k)_ ___________

2t k l k

A k_ _____ −
t k l k

ip k π_ ____ −
t k

i j k π_ ____

if T k = 2 .

if T k = 1

(5.6)

The error term e
_

is then given by (in the notation of (5.3))

e
_

≡

not j 1 = . . . = j l = 0
j 1 = 0 j l = 0
Σ . . . Σ
∞ ∞

f (τ τ) (
k = 1
Π

l
β k) , (5.7)

where τ τ = (τ 1 , . . . , τ l),

τ k = t k (1 + 2 j k l k) (5.8)

and

β k =






rk

2l k t k j k

e − j k A k

if T k = 2 .

if T k = 1
(5.9)

If f (t) ≤ C for all allowed values of t t, then

e
_
 ≤ ê ∼∼ C

k = 1
Σ
l

γ k , (5.10)

where

γ k =






rk

2l k t k

e − A k

if T k = 2 .

if T k = 1
(5.11)

Note that the continuous and discrete variables in the formulas here can be ordered in an

arbitrary way. Also note that the results of Sections 2-4 are all special cases of the formulas in

this section. As before, if f is real-valued, then it is possible to reduce the computations

somewhat, but the formulas get complicated.

- 18 -

6. Numerical Examples

The main motivation for our work has been the desire to compute probability distributions of

interest in queueing models. In this section we provide a few examples associated with the

M/G/1 queue. For the most part, the transforms can all be found in Taka ́ cs (1962). Some

additional details can be found in Lucantoni et al. (1994).

6.1 The Busy Period: Duration and Number Served

We start with the joint distribution of the number served, N, and the duration, X, of a busy

period in the M/G/1 queue. Let G 1 (n) = P(N = n), G 2 (x) = P(X ≤ x) and

G(n ,x) = P(N = n , X ≤ 2). We define the one-dimensional and two-dimensional transforms

G
_ _

1 (z) =
n = 0
Σ
∞

z nG 1 (n) , (6.1)

Ĝ 2 (s) =
0
∫
∞

e − sxdG 2 (x) , (6.2)

G̃(z ,s) =
n = 0
Σ
∞

0
∫
∞

e − sxz nd x G(n ,x) . (6.3)

Note that Ĝ(s) = G̃(1 ,s) and G
_ _

(z) = G̃(z , 0). Numerically, it is easier to work with the

Laplace transforms of the complimentary cumulative distribution functions rather than the

cumulative distribution functions (CDFs) themselves (because there is less aliasing error).

Therefore, we invert the transforms G̃
c
(z ,s) and Ĝ

c
(s), where

G̃
c
(z ,s) =

n = 0
Σ
∞

0
∫
∞

e − sxz nG c (n ,x) dx , (6.4)

Ĝ
c
(s) =

0
∫
∞

e − sxG2
c (x) dx , (6.5)

G c (n ,x) = P(N = n , X > x) and G2
c (x) = P(X > x). It can be shown that

- 19 -

G̃
c
(z ,s) =

s
1_ _ (G

_ _
(z) − G̃(z ,s)) (6.6)

Ĝ
c
(s) =

s
1_ _ (1 − Ĝ(s)) . (6.7)

It is well known that G̃(z ,s), Ĝ(s) and G
_ _

(z) satisfy the functional equations

G̃(z ,s) = zĥ(s + λ − λG̃(z ,s)) (6.8)

Ĝ(s) = ĥ(s + λ − λĜ(s)) (6.9)

G
_ _

(z) = zĥ(λ − λG
_ _

(z)) , (6.10)

where ĥ(s) represents the Laplace-Stieltjes transform of service-time CDF; see Taka ́ cs (1962).

We compute the transforms iteratively. In Choudhury, Lucantoni and Whitt (1994) we prove that

all the iterations converge (even when server utilization is bigger than 1) if we start them at 0.

We invert the one-dimensional transforms using the algorithms in Abate and Whitt (1992a) and

the two-dimensional transform using the algorithm in Section 4.

In Figure 1 we plot, in log scale, the conditional busy-period distribution

P(X > xN = n) = G c (n ,x)/ G 1 (n) for n = 1 , n = 5 and n = 25 when the arrival rate is 0.8

and the service-time distribution is gamma with mean 1 and shape parameter 1/4. Then the

squared coefficient of variation (SCV, variance divided by the square of the mean) is 4. We also

show the unconditional distribution P(X > x). Note that the conditional and the unconditional

busy-period distributions are quite different.

Also note that the conditional distributions are not straightforward to find by alternate means.

In particular, the conditional busy-period distribution is not the n-fold convolution of the service-

time distribution. However, in the special case of deterministic service times, the conditional

busy-period distribution is just a point mass at n times the constant service time. This case is

difficult to invert numerically since the inverse transform is discontinuous. However, we have

considered the E k (Erlang of order k) service-time distribution with k up to a few hundreds and

observed that as k increases, the conditional busy-period distribution approaches that of the point

- 20 -

mass mentioned above. This provides a check on the algorithm. We have also calculated the

distribution of number served conditioned on the length of the busy period, but we do not show

that here.

6.2 The Transient Queue-Length Distribution

Next we consider the transient queue-length distribution in an M/G/1 queue. Let, Q(t)

represent the queue length at time t (including the one in service, if any). Let there be a departure

at time t = 0 and at that instant let there be i 0 customers in the system. Let,

Y i 0
(n , t) = P(Q(t) = nQ(0) = i 0). Consider the two-dimensional transform

Ỹ i 0
(z ,s) =

n = 0
Σ
∞

t = 0
∫
∞

e − stz nY i 0
(n , t) dt . (6.11)

It can be shown that

Ỹ i 0
(z ,s) =

(s + λ − λz) (z − ĥ(s + λ − λz))

z i 0 + 1 (1 − ĥ(s + λ − λz))_ ________________________ +
z − ĥ(s + λ − λz)

(z − 1) p̂ i 0 0 (s) ĥ(s + λ − λz)
_______________________ , (6.12)

where

p̂ i 0 0 (s) =
s + λ − λĜ(s) .

{Ĝ(s) }i 0

_____________ (6.13)

and Ĝ 2 (s) is defined in (6.2) and obtained iteratively using (6.9); see Taka ́ cs (1962) and

Lucantoni et al. (1994).

Using the results in Section 4, we invert the transform in (6.12) and get the transient queue-

length distribution. In Figure 2 we plot in log scale this distribution at t = 5 with i 0 = 10 for

three different service-time distributions, each with mean 1: M (exponential), E 4 = Γ 4 (Erlang or

gamma with SCV = 1/4), and Γ 1/4 (gamma with SCV = 4). We note that greater service-time

variability causes a greater variability in the queue-length distribution as well.

- 21 -

In Figure 3 we concentrate on the gamma service-time distribution and show the transient

distribution at t = 1 , t = 5 and t = 100. The steady-state distribution is also shown. Note that

the transient behavior is quite different from the steady-state behavior. Also note that the

transient tail decays faster than the steady-state tail (the latter is known to be geometric in this

case). It is interesting to note that at t = 100 the transient and steady-state distributions are very

close for small n, but at large n the transient tail decays much faster than the steady-state tail.

The special case of M/M/1 transient queue length has been studied extensively and several

algorithms have been proposed. Abate and Whitt (1989) recommend using Theorem 1 in Section

1.2 (p. 23) of Taka ́ cs (1962), which gives Y i 0
(n , t) as a finite integral. We implemented this

algorithm using a fifth-order Romberg integration, as described in Section 4.3 of Press, Flannery,

Teukolsky and Vetterling (1988). Using double precision arithmetic, we observed that for the

example in Figure 2 this algorithm agrees with our numerical inversion algorithm up to 11 or

more significant places. Also, the two algorithms are comparable in speed (both took a few

seconds on a SUN 2 workstation to compute ten points of the distribution). Of course, the

transform inversion algorithm works for general service-time distributions as well without any

loss of speed or accuracy. (We are unaware of alternate algorithms in the M/G/1 case). We also

observed that the algorithm based on integration has problems (gets too slow or inaccurate) if t is

very large or if the server utilization is close to 1 or exceeds 1. The transform inversion algorithm

did not have problems in any of these cases. (Of course, it is possible to address the problems in

the integration-based algorithm by fine tuning it based on the properties of the integrand, but we

did not do this.)

6.3 The Transient Workload Distribution

Next we consider the transient workload distribution in an M/G/1 queue. Let W(t) represent

the workload (remaining service time of all customers in the system) at time t and let W(t ,x) be

- 22 -

its CDF. Consider the two-dimensional transform

w̃(ξ ,s) = ∫
0

∞ ∫
0

∞
e − ξte − sxd x W(t ,x) dt . (6.14)

It can be shown that

w̃(ξ ,s) =
ξ − s + λ − λ ĥ(s)

{ ĥ(s) }i 0 − sP̂ i 0 0 (s)
_ ________________ , (6.15)

where i 0 is the initial queue length (assuming that there has been a departure at t = 0) and

p̂ i 0 0 (s) is as given in (6.13). We actually invert the double transform of

w̃
c
(ξ ,s) = ∫

0

∞ ∫
0

∞
e − ξte − sxW c (t ,x) dx dt , (6.16)

where W c (t ,x) = 1 − W(t ,x). It can be shown that

w̃(ξ ,s) =
sξ
1_ __ −

s
w̃(ξ ,s)_ ______ . (6.17)

We do the transform inversion using the continuous-continuous variant of the algorithm in

Section 2. In Figure 4 we plot the transient workload distribution at times t = 2 , t = 10 and

t = 50, assuming that the system starts empty at t = 0. The service-time distribution is gamma

with mean 1 and SCV = 4 and the server utilization is 1.5, so that W(t) → ∞ as t → ∞.

However, the transient workload is finite and Figure 4 shows how it progresses with time.

6.4 The Conditional Queue Length At Arrivals

We conclude with a discrete-discrete example to illustrate Section 3. For this purpose, let Q j

be the queue length observed by (just prior to) the j th arrival. We shall calculate the conditional

probability

pik
(n) = P(Q n + m = kQ m = i) (6.18)

in the M/M/1 queue. The double transform of pik
(n) is given in Theorem 4 on p. 28 of Taka ́ cs

- 23 -

(1962). We observed that there are two typographical errors in the formula. After correcting

these, we get

P(z ,ω) ≡
n = 0
Σ
∞

k = 0
Σ
∞

pik
(n) z k ωn = −

[z − g(ω)] [µ − λzωg(ω)]
g(ω) [µ − (λ + µ) z] z i

_ _____________________

+
[1 − g(ω)] [z − g(ω)] [µ − λzωg(ω)]
(1 − z) [µ − (λ + µ) g(ω)] [g(ω)] i + 1

_ ______________________________ , (6.19)

where λ is the arrival rate, µ is the service rate and

g(ω) =
2λ ω

(λ + µ) − √ (λ + µ)2 − 4λ µ ω_ _______________________ . (6.20)

Figure 5 plots in log scale the conditional probability distribution of the queue length

observed by the (n + 1) st customer given that the first customer saw 10 in the queue (including

the one in service). We consider four cases: n = 2, n = 10, n = 100 and n = ∞. The transient

distributions approach the steady-state distribution as n gets large. it is interesting to note that the

distribution drops to zero (shown by dotted line) whenever k exceeds (n + 10). This is because

there cannot be more than (n + 10) in the queue at the arrival instant of the (n + 1) st customer

since the first arrival found 10 in the system.

We can also study this conditional distribution in the more general M/G/1 case using

Theorem 11 on p. 70 of Taka ́ cs (1962), but we do not do that.

Acknowledgment Our algorithm here builds on work on one-dimensional algorithms by Joseph

Abate. We thank him for showing the way.

References

ABATE, J. and WHITT, W. (1989) Calculating time-dependent performance measures for the

M/M/1 queue. IEEE Trans. Commun. 37, 1102-1104.

ABATE, J. and WHITT, W. (1992a) The Fourier-series method for inverting transforms of

probability distributions. Queueing Systems 10, 5-88.

ABATE, J. and WHITT, W. (1992b) Numerical inversion of probability generating functions.

Opns. Res. Letters 12, 245-251.

CHAMPENEY, D. C. (1987) A Handbook of Fourier Theorems. Cambridge University Press,

Cambridge, England.

CHOUDHURY, G. L. and LUCANTONI, D. M. (1994) Numerical computation of a large

number of moments with applications to asymptotic analysis. Opns. Res., to appear.

CHOUDHURY, G. L., LUCANTONI, D. M. and WHITT, W. (1993) Numerical solution of

M t / G t /1 queues, submitted.

CHOUDHURY, G. L, LUCANTONI, D. M. and WHITT, W. (1994) The busy period in the

BMAP/G/1 queue, in preparation.

DAVIS, P. J. and RABINOWITZ, P. (1984) Methods of Numerical Integration, second ed.,

Academic Press, New York.

DITKIN, V. A. and PRUDNIKOV, A. P. (1962) Operational Calculus in Two Variables and its

Applications, Pergamon Press, (English translation of 1958 Russian edition).

FELLER, W. (1971) An Introduction to Probability Theory and its Applications, vol. II, second

ed., Wiley, New York.

FETTIS, H. E. (1955) Numerical calculation of certain definite integrals by Poisson’s summation

formula. Math. Tables Other Aids Comput. 9, 85-92.

FROLOV, G. and KITAEV, M. (1992) Personal communication.

GOOD, I. J. (1962) Analogs of Poisson’s sum formula. Amer. Math. Monthly 69, 259-266.

HUNTLEY, E. and ZINOBER, A. S. I. (1979) Applications of numerical double Laplace

transform algorithms to the solution of linear partial differential equations. Computing 21,

245-258.

JOHNSONBAUGH, R. (1979) Summing an alternating series. Amer. Math. Monthly, 86, 637-

648.

LUCANTONI, D. M., CHOUDHURY, G. L. and WHITT, W. (1994) The transient BMAP/G/1

queue. Stochastic Models 10, to appear.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A. and VETTERLING, W. T. (1988)

Numerical Recipes, FORTRAN version, Cambridge University Press, Cambridge, England.

SHEPHARD, N. G. (1991) Numerical integration rules for multivariate inversions. J. Statist.

Comput. Simul. 39, 37-46.

SINGHAL, K., VLACH, J. and VLACH, M. (1975) Numerical inversion of multidimensional

Laplace transforms. Proc. IEEE 63, 1627-1628.

TAKA ´ CS, L., (1962) Introduction to the Theory of Queues, Oxford University Press, New York.

TOLSTOV, G. P., (1976) Fourier Series, Dover, New York.

VAN DER POL, B. and BREMMER, H. (1955) Operational Calculus, Cambridge Press

(reprinted, Chelsea Press, New York, 1987).

WIMP, J. (1981) Sequence Transformations and Their Applications, Academic Press, New York.

_ ___

exp


 2l 1

A 1_ ___ +
2l 2

A 2_ ___




/(4l 1 t 1 l 2 t 2)

Aliasing _ _____________________________________

error bound A 1 (= A 2) l 1 = l 2 = 1 l 1 = l 2 = 2 l 1 = l 2 = 3
_ ___

10 − 8 19.114 5×107 8. 8×102 16.2
_ ___

10 − 12 28.324 5×1011 8. 8×104 350_ ___ 































































Table 1. Controlling the roundoff error by the choice of l 1 and l 2 . (Here we assume that
t 1 = t 2 = 1.)

Figure 1. The conditional busy-period distribution P(X > xN = n) in the M/G/1 queue in log
scale, as a function of n when the arrival rate is 0.8 and the service-time distribution is gamma
with mean 1 and SCV 4.

Figure 2. The transient queue-length distribution P(Q(5) = nQ(0) = 10) in the M/G/1
queue, in log scale, as a function of the service-time distribution when the arrival rate is 0.8 and
the mean service time is 1.

Figure 3. The transient queue-length distribution P(Q(t) = nQ(0) = 10) in the M/G/1
queue, in log scale, as a function of time t when the arrival rate is 0.8 and the service-time
distribution is gamma with mean 1 and SCV 4.

Figure 4. The transient workload complementary CDF P(W(t) > xW(0) = 0) for the
unstable M/G/1 queue with arrival rate 1.5 and gamma service-time distribution with mean 1 and
SCV 4.

Figure 5. The conditional probability of queue lengths at arrival epochs,
P(Q n + 1 = kQ 1 = 10), in the M/M/1 queue as a function of n when the traffic intensity is
ρ = 0. 8.

